National Repository of Grey Literature 17 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
MAD UFOs: Magnetically Arrested Discs with persistent Ultra-Fast Outflows
Suková, Petra ; Zajaček, M. ; Karas, Vladimír
We study an outflow that develops in the MAD state in 3D GRMHD simulations. We show that the outflow can be accelerated to\nrelativistic velocities and persist over the course of our simulation. We compare the properties of the outflow from MAD discs with those launched by orbiting secondary at close orbit. The main difference is that the orbiting body launches a more coherent, quasiperiodic ultrafast outflow at lower velocities (v < 0.5c) while the outflow launched in the MAD state (without the body) has a stochastic behaviour and has anapproximately flat velocity distribution between lower anf higher outflow velocities, 0.2c < v < 0.3c and v > 0.5c.
Quasar accretion disk mapping by gravitational microlensing
Ledvina, Lukáš ; Heyrovský, David (advisor) ; Horák, Jiří (referee)
Quasar microlensing is a relatively newly explored phenomenon, which is ideally suited for studying the spatial distribution of emission from the innermost accretion disc. By now we know many macrolensed quasars, in which we can observe multiple images formed by the deflection of light in the gravitational field of an intervening galaxy. In case one of these images passes directly through the stellar population of the galaxy, it can be additionally microlensed by individual stars. The gravitational field of these stars forms a caustic network for light passing by. When a quasar accretion disc crosses behind this network, induced changes can be observed in the light curve as well as in the spectrum. In the first part of this thesis we study the statistics of the time intervals between successive caustic crossings. In the second part we use a fully relativistic Kerr-metric thin-disc model for studying the light curve of a fold-caustic crossing and its dependence on the accretion- disc parameters. In the last part we simulate changes in the X-ray iron-line profile during a fold-caustic crossing. We find characteristic spectral features formed on the line, and derive their analytical description. Finally, we map the maximum strength of microlensing-generated peaks on the spectral line for different...
Quasar accretion disk mapping by gravitational microlensing
Ledvina, Lukáš ; Heyrovský, David (advisor)
Quasar microlensing is a relatively newly explored phenomenon, which is ideally suited for studying the spatial distribution of emission from the innermost accretion disc. By now we know many macrolensed quasars, in which we can observe multiple images formed by the deflection of light in the gravitational field of an intervening galaxy. In case one of these images passes directly through the stellar population of the galaxy, it can be additionally microlensed by individual stars. The gravitational field of these stars forms a caustic network for light passing by. When a quasar accretion disc crosses behind this network, induced changes can be observed in the light curve as well as in the spectrum. In the first part of this thesis we study the statistics of the time intervals between successive caustic crossings. In the second part we use a fully relativistic Kerr-metric thin-disc model for studying the light curve of a fold-caustic crossing and its dependence on the accretion- disc parameters. In the last part we simulate changes in the X-ray iron-line profile during a fold-caustic crossing. We find characteristic spectral features formed on the line, and derive their analytical description. Finally, we map the maximum strength of microlensing-generated peaks on the spectral line for different...
Understanding the iron K alpha line emissivity profile with GR radiative transfer code
Zhang, Wenda ; Dovčiak, Michal ; Bursa, Michal ; Svoboda, Jiří ; Karas, Vladimír
In this work, we present calculations of the illumination and the iron K alpha emissivity profiles performed with the GR radiative transfer code Monk that employs the Monte Carlo method. In most previous studies the distinction between the illumination and emissivity profiles was not clearly made. For AGN discs, the emissivity profile has a similar shape with the illumination profile, but in the inner most region the former is steeper than the latter, where as for accretion discs in black hole X-ray binaries, the distinction between the two profiles is more dramatic. We find out that the different behavior between AGN and black hole X-ray binary discs is due to the different energy spectra of the illuminating radiation. This suggests that the emissivity profile of the iron Kαline cannot be determined by black hole spin and corona geometry alone and the energy spectrum of the illuminating radiation has to be taken into account. We also study the dependence of the emissivity profile on the geometry of the corona.
Quasar accretion disk mapping by gravitational microlensing
Ledvina, Lukáš ; Heyrovský, David (advisor)
Quasar microlensing is a relatively newly explored phenomenon, which is ideally suited for studying the spatial distribution of emission from the innermost accretion disc. By now we know many macrolensed quasars, in which we can observe multiple images formed by the deflection of light in the gravitational field of an intervening galaxy. In case one of these images passes directly through the stellar population of the galaxy, it can be additionally microlensed by individual stars. The gravitational field of these stars forms a caustic network for light passing by. When a quasar accretion disc crosses behind this network, induced changes can be observed in the light curve as well as in the spectrum. In the first part of this thesis we study the statistics of the time intervals between successive caustic crossings. In the second part we use a fully relativistic Kerr-metric thin-disc model for studying the light curve of a fold-caustic crossing and its dependence on the accretion- disc parameters. In the last part we simulate changes in the X-ray iron-line profile during a fold-caustic crossing. We find characteristic spectral features formed on the line, and derive their analytical description. Finally, we map the maximum strength of microlensing-generated peaks on the spectral line for different...
Fields of current loops around black holes
Vlasáková, Zuzana ; Semerák, Oldřich (advisor) ; Svítek, Otakar (referee)
The magnetic field of a test circular current loop placed symmetrically around a Schwarzschild black hole has been determined several times in the literature and solutions has been expressed by different formulas. We compare these formulas analytically as well as numerically, and show, in particular, how they behave on the symmetry axis, in the equatorial plane and on the horizon. The problem is relevant for modelling accretion discs around black holes.
Chaos in deformed black-hole fields
Witzany, Vojtěch ; Semerák, Oldřich (advisor) ; Kopáček, Ondřej (referee)
The consequences of two key approximations of accretion-disc physics near black holes are studied in this thesis. First, the question of effective ``pseudo-Newtonian" potentials mimicking a black hole is investigated both through numerical simulations and analytical means, and second, the neglect of additional gravitating matter near accreted-upon black holes and its consequences are put to test. After some broader discussion of integrability, resonance and chaos, a general "pseudo-Newtonian" limit for geodesic motion is derived, and applied for the case of null geodesics near a glowing toroid and for time-like geodesics in the Kerr metric. Afterwards, a new Newtonian gravitational potential for non- singular toroids is proposed and its usefulness for the so-called Weyl space-times is discussed. Finally, a new pseudo-Newtonian potential is introduced and applied alongside already known potentials in models of free test particle motion in the field of a black hole with a disc or ring, in complete analogy with previous exact-relativistic studies, and the previous conclusion of chaos in disc/ring-hole models is confirmed. Overall, the pseudo-Newtonian framework is able to reproduce a number of key features of the original systems with notable differences arising only as a consequence of extremely strong or...
Quasar accretion disk mapping by gravitational microlensing
Ledvina, Lukáš ; Heyrovský, David (advisor) ; Horák, Jiří (referee)
Quasar microlensing is a relatively newly explored phenomenon, which is ideally suited for studying the spatial distribution of emission from the innermost accretion disc. By now we know many macrolensed quasars, in which we can observe multiple images formed by the deflection of light in the gravitational field of an intervening galaxy. In case one of these images passes directly through the stellar population of the galaxy, it can be additionally microlensed by individual stars. The gravitational field of these stars forms a caustic network for light passing by. When a quasar accretion disc crosses behind this network, induced changes can be observed in the light curve as well as in the spectrum. In the first part of this thesis we study the statistics of the time intervals between successive caustic crossings. In the second part we use a fully relativistic Kerr-metric thin-disc model for studying the light curve of a fold-caustic crossing and its dependence on the accretion- disc parameters. In the last part we simulate changes in the X-ray iron-line profile during a fold-caustic crossing. We find characteristic spectral features formed on the line, and derive their analytical description. Finally, we map the maximum strength of microlensing-generated peaks on the spectral line for different...
Magnetic fields of current loops around black holes
Pejcha, Jakub ; Semerák, Oldřich (advisor) ; Ledvinka, Tomáš (referee)
Magnetic field of equatorial current loop around Schwarzschild (or Kerr) black hole has been studied in many papers and solutions expressed in different forms. In this work we summarize derivations of some of these solutions, illustrate them on specific examples and compare these examples. We also indicate analytic com- parison of some of the formulas. Published formulas lead, as expected, to same results, but some of them are more convenient for numerical evaluation. 1
Modified Newtonian potentials for particles and fluids in permanent rotation around black holes
Karas, Vladimír ; Abramowicz, M. A.
Modified Newtonian potentials have been proposed for the description of relativistic effects acting on particles and fluids in permanent orbital motion around black holes.

National Repository of Grey Literature : 17 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.